## Оптимальные решения по созданию систем автоматического контроля объема газовых выбросов (АСКВ) на основе газоанализаторов «МАК-2000-UMS»/«МАК-2000»



В статье представлены газоанализаторы «МАК-2000-UMS» и «МАК-2000» отечественного производства, предназначенные для определения содержания загрязняющих газов в атмосферном воздухе. Показано, что это оптимальное решение для построения систем автоматического контроля объема выбросов (АСКВ).

000 «НПФ «Энергопромкомплект», г. Москва

Для контроля загрязнения атмосферного воздуха выбросами дымовых труб, паровых и водогрейных котлов, ПГУ, ГТУ, котлов утилизаторов и других технических устройств и установок служит система автоматического контроля объема выбросов (АСКВ). Ее назначение – вычислять, нормировать и передавать в АСУ ТП данные о текущем и накапливающемся содержании вредных веществ в атмосфере в единицах измерений типа тонна в час (в сутки, неделю, месяц, год) по каждому из измеряемых системой загрязняющих окружающий воздух компонентов.

В общем виде данные АСКВ о текущем и накапливающемся количестве выбросов вредных веществ в атмосферу получаются при умножении текущего измеренного значения концентрации Сх (к $\Gamma$ /м³) на поток (м³/с) и дальнейшем нормировании.

Значения концентраций измеряются и передаются в АСКВ газоанализаторами типа «МАК-2000-UMS» или другими. Значения потока традиционно измеряются и предоставляются в систему путем вычислений: осуществляется интегрирование значения скорости потока газа по сечению газохода в точке измерения.

Погрешность измерения потока будет состоять из суммы погрешностей измерения расходомерами разного типа (измерителями скорости потока дымового газа) и процесса вычисления (интегрирования по пло-

щади сечения газохода). Эта погрешность может быть велика, учитывая, что скорость газа различается по сечению газохода. Также значительны ежегодные затраты на обслуживание и поверку измерителя скорости потока дымового газа.

Для источников газовых загрязнений, работающих на природном газе (метане), по нашему мнению, лучше использовать датчики расхода топлива — природного газа, которые предоставят более точные и достоверные данные. Показания датчика расхода топлива-метана напрямую дают нам значение потока образующегося дымового газа. Обычно погрешность датчика расхода топлива-метана значительно ниже, чем погрешность измерителей скоростей потока, плюс исключается дополнительная погрешность интегрирования по сечению газохода.

Измерение  $O_2$  позволяет получить значение увеличения потока за счет «присосов» воздуха. Также оно дает возможность расчетным путем определить значение концентрации  $CO_2$  (с относительной погрешностью измерения  $O_2$ ) и отказаться от использования сенсора  $CO_2$ , что снижает затраты потребителя на обслуживание и поверку.

В настоящее время в промышленной эксплуатации (в основном на паровых и водогрейных котлах ТЭЦ, ГРЭС) находится более 700 комплектов газоанализаторов (ГА) «МАК-

2000-UMS»/«МАК-2000», предназначенных для определения содержания  $O_2$ , CO,  $CH_4$ ,  $CO_2$ , NO,  $NO_2$ ,  $SO_2$  в дымовом газе.

Газоанализаторы «МАК-2000-UMS»/«МАК-2000» производства ООО «НПФ «Энергопромкомплект» показали себя как очень надежные и простые в обслуживании приборы. Наиболее полно данными ГА укомплектованы Конаковская ГРЭС (более 40 комплектов), Рязанская, Ириклинская, Харанорская ГРЭС (более 20 комплектов на каждой ГРЭС). На энергетических котлах газоанализаторы ставятся на каждом газоходе: обычно по два на котел, а на 800-мегаваттных блоках Рязанской ГРЭС по четыре на котел. На Ириклинской, Рязанской ГРЭС и многих других ТЭЦ и ГРЭС данные по О2 используются в автоматической системе корректировки соотношения «топливо/воздух», а данные по СО и  $NO_x$  — в системе контроля и учета выбросов.

Для паровых и водогрейных котлов энергоблоков ТЭЦ, ГРЭС, в частности с ПГУ и ГТУ, «Энергопромкомплект» с 2008 года выпускает газоанализатор «МАК-2000-UMS» с усовершенствованной конструкцией, позволяющей анализировать содержание  $O_2$ , CO, NO,  $NO_2$ ,  $SO_2$ ,  $CO_2$ ,  $CH_4$ ,  $C_3H_8$ ,  $NH_3$ ,  $H_2$ ,  $SF_6$  (элегаз), в том числе с применением различных типов первичных сенсоров (ИК-сенсоры, электрохимические и др.) для расширения диапазонов концентраций измеряемых газов (табл. 1).

Газоанализатор «MAK-2000-UMS» можно применять для следующих задач:

- анализа с повышенной точностью малых концентраций СО и NO,  $NO_2$  ( $NO_x$ ), что требуется для блоков ТЭЦ, ГРЭС с ПГУ и котельных ГТУ;
- анализа концентрации  $O_2$ , CO, NO,  $NO_2$ ,  $SO_2$ ,  $CO_2$ ,  $CH_4$ ,  $NH_3$ ,  $H_2$  в дымовых/отходящих газах (газовых средах различных технологических процессов и экомониторинга);
- анализа концентрации  $O_2$ , CO, NO,  $NO_2$ ,  $SO_2$ ,  $CO_2$ ,  $CH_4$ ,  $C_3H_8$ ,  $NH_3$ ,  $H_2$ ,  $SF_6$  (элегаза) в воздухе рабочей зоны; газоанализатор позволяет осуществлять поочередной опрос до 12 точек с выдачей релейных сигналов (до 13 реле типа «сухой контакт» 250 B,

16 A) о двух уровнях превышения допустимой концентрации для включения/ выключения звуковой/световой сигнализации, вентиляции и проветривания помещений.

Анализатор выполняет автоматическую периодическую калибровку по воздуху «ноля»  $O_2$ , CO, NO,  $NO_2$ ,  $SO_2$ ,  $CO_2$ ,  $CH_4$ ,  $C_3H_8$ ,  $NH_3$ ,  $H_2$ ,  $SF_6$  (для  $O_2$  калибруется усиление по воздуху).

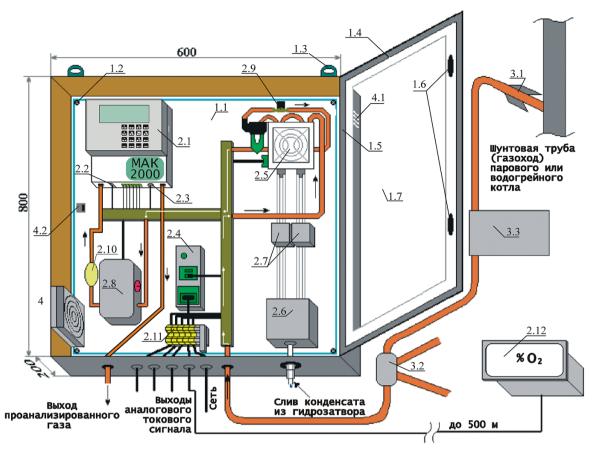
По каждому измеряемому компоненту газоанализаторы «МАК-2000-UMS»/«МАК-2000» выдают токовый сигнал 0...5 или 4...20 мА. Приборы оснащены портом RS-232 (порт RS-485 Modbus RTU устанавливается по дополнительному заказу) и встроенной флеш-картой, на которой собирается архив проведенных за год

Таблица 1. Измеряемые газоанализатором «МАК-2000-UMS» компоненты, диапазоны, погрешности

| Определяемый<br>компонент | Диапазон<br>измерений,<br>об. доля | Диапазон, в котором нормируются характеристики погрешности, об. доля | Пределы допускаемых значений основной погрешности |               |
|---------------------------|------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|---------------|
|                           |                                    |                                                                      | абсолютной                                        | относительной |
| 02                        | 025 %                              | 05 %<br>525 %                                                        | ±0,2 %                                            | ±4 %          |
| СО                        | 0200 млн <sup>-1</sup>             | 020 млн <sup>-1</sup><br>20200 мпн <sup>-1</sup>                     | ±2 млн <sup>-1</sup>                              | ±10 %         |
|                           | 02000 млн⁻¹                        | 0100 млн <sup>-1</sup><br>1002000 млн <sup>-1</sup>                  | ±5 млн <sup>-1</sup>                              | ±5 %          |
|                           | 02 %                               | 00,2 %<br>0,22 %                                                     | ±0,01 %                                           | ±5 %          |
|                           | 010 %                              | 01 %<br>110 %                                                        | ±0,05%                                            | ±5%           |
| CO2                       | 02000 млн <sup>-1</sup>            | 0400 млн <sup>-1</sup><br>4002000 млн <sup>-1</sup>                  | ±20 млн <sup>-1</sup>                             | ±5 %          |
|                           | 02 %                               | 00,2 %<br>0,22 %                                                     | ±0,01 %                                           | ±5 %          |
|                           | 020 %                              | 02 %<br>220 %                                                        | ±0,01 %                                           | ±5 %          |
| CH <sub>4</sub>           | 05 %                               | 02 %<br>25 %                                                         | ±0,01 %                                           | ±5 %          |
| NO                        | 0200 млн <sup>-1</sup>             | 010 млн <sup>-1</sup><br>10200 млн <sup>-1</sup>                     | ±1 млн <sup>-1</sup>                              | ±10 %         |
|                           | 02000 млн⁻¹                        | 0200 млн <sup>-1</sup><br>2002000 мпн <sup>-1</sup>                  | ±20 млн <sup>-1</sup>                             | ±10 %         |
| NO <sub>2</sub>           | 0200 млн <sup>-1</sup>             | 0200 млн⁻¹                                                           | ±20 млн <sup>-1</sup>                             | ±10 %         |
| NH <sub>3</sub>           | 02000 млн <sup>-1</sup>            | 0100 млн <sup>-1</sup><br>1002000 млн <sup>-1</sup>                  | ±10 млн <sup>-1</sup>                             | ±8 %          |
|                           | 0100 млн <sup>-1</sup>             | 010 млн <sup>-1</sup><br>10100 млн <sup>-1</sup>                     | ±1 млн <sup>-1</sup>                              | ±10 %         |
| SO <sub>2</sub>           | 02000 млн <sup>-1</sup>            | 0200 млн <sup>-1</sup><br>2002000 млн <sup>-1</sup>                  | ±20 млн <sup>-1</sup>                             | ±10 %         |
|                           | 02 %                               | 00,2 %<br>0,22 %                                                     | ±0,02 %                                           | ±10 %         |
| H <sub>2</sub>            | 02 %                               | 00,5 %<br>0,52 %                                                     | ±0,05 %                                           | ±10 %         |
| SF <sub>6</sub>           | 02000 млн <sup>-1</sup>            | 0200 млн <sup>-1</sup><br>2002000 млн <sup>-1</sup>                  | ±20 млн <sup>-1</sup>                             | ±10 %         |

измерений (время обновления архива можно изменять). На персональном компьютере всегда можно просмотреть и вывести в графическом виде данные о концентрации измеряемых газов за интересующий промежуток времени. Анализатор имеет программируемый доступ к двум уровням уставок предельных концентраций.

Многокомпонентные одноканальные газоанализаторы «МАК-2000»/ «МАК-2000-UMS» в основном поставляются смонтированными «под ключ» в стальных пылевлагозащищенных шкафах с двойным антикоррозионным покрытием для навесного монтажа с габаритами 800 × 600 × 200 мм или в шкафах для напольного монтажа.


Процессорное исполнение ГА (рис. 1) позволяет получать и выводить результаты измерения как в прямом, так и в приведенном, то есть нормированном, виде: пересчитывать объем  $NO_x$  в  $NO_2$  и т. д.

В комплекте со шкафом поставляется блок сухой пробоподготовки, включающий в себя два противопылевых микрофильтра 20 мкм с влагоотделителем, термоэлектрический холодильник ТЭХ-40, который предварительно осущает дымовой газ перед подачей в измерительный блок для удаления избыточного конденсата с конденсатоотводчиков, и т.д. Газоанализатор оснащен электронным ротаметром контроля скорости потока газа через анализатор.

Температурный режим эксплуатации ГА в стандартном исполнении составляет –5...40 °C. Также компания производит газоанализаторы в исполнении с блоком термостатирования сенсоров, что позволяет эксплуатировать их при температурах в месте установки до 55 °C без потери точности и ресурса работы сенсоров.

«Энергопромкомплект» может поставлять систему с обогреваемыми импульсными линиями (материал — сталь типа X18Н9 или фторопласт), хотя обычно это делать нецелесообразно. Предпочтительно поставлять компоненты, необходимые для прокладки импульсных линий: трубки различных диаметров из нержавеющей стали, фторопласта, нейлона, ПВД и других материалов.

Для эксплуатации ГА требуются баллоны с государственными стандартными образцами поверочных га-



## 1. Стальной шкаф с двойным антикоррозийным порошковым покрытием

- 1.1. Монтажная панель, на которой монтируется «под ключ» ГА;
- 1.2. Винты крепления монтажной панели к корпусу шкафа;
- Петли для подвешивания шкафа, привинчивающиеся к задней стенке;
- Дверца шкафа с кольцевым резиновым уплотнителем, двумя замками и стеклом.

## 2. Смонтированный на монтажной панели процессорный газовнализатор

- 2.1. Корпус анализатора с 4-строчным ЖКИ-дисплеем и клавиатурой;
- 2.2. Разъем порта ввода/вывода RS-232;
- 2.3. Разъем порта ввода/вывода RS-485 (опция);
- 2.4. Импульсный блок питания термоэлектрического холодильника;
- 2.5. Термоэлектрический холодильник с микрофильтром;

- Гидрозатвор со шлангами ПВХ для отвода избыточного конденсата;
- 2.7. Система защиты от заброса воды в газоанализатор;
- 2.8. Микрокомпрессор для прокачки пробы дымового газа, воздуха через анализатор;
- 2.9. Клапан калибровки нуля (продувки воздухом);
- 2.10. Демпфирующий фильтр;
- 2.11. Клеммник;
- 2.12. Дополнительный выносной блок цифровой индикации.
- 3. Импульсная линия подвода анализируемого дымового газа
  - 3.1. Точки отбора дымового газа;
  - 3.2. Кран для переключения на другие котлы;
  - 3.3. Водоэжекционный блок пробоподготовки.

## 4. Вентилятор охлаждения шкафа с противопылевым фильтром

- 4.1. Вентиляционная решетка с противопылевым фильтром;
- 4.2. Выключатель вентилятора.

Рис. 1. Процессорное исполнение газоанализатора «МАК-2000»/«МАК-2000-UMS»

зовых смесей ГСО ПГС (для калибровки и поверки газоанализаторов согласно методике поверки). Компания может поставлять баллоны ГСО-ПГС на  $O_2$ , CO, NO,  $NO_2$ ,  $SO_2$ ,  $CO_2$ ,  $CH_4$ ,  $C_3H_8$ ,  $NH_3$ ,  $H_2$ ,  $SF_6$  (элегаз), также потребитель имеет возможность самостоятельно заказать их на заводах-изготовителях ПГС, специалисты «Энергопромкомплект» предоставят всю необходимую информацию.

Вместе с газоанализаторами целесообразно поставлять дополнительные водоэжекционные блоки пробоподготовки дымового газа, которые «Энергопромкомплект» также производит. Приведем пример. На котлах. работающих на угле, мазуте, сланце, торфе и другом топливе, для анализа О2, СО, NO целесообразно сделать дополнительную водоэжекционную пробоподготовку дымового газа, то есть осушить газ от избыточного конденсата и очистить от пыли и водорастворимых SO<sub>2</sub>, NO<sub>2</sub>, что удобно делать водоэжекционным блоком. Вода не отмывает О2, СО и NO, и ГА может одновременно анализировать эти три газа. Такая комплектация самая распространенная, особенно для мазутных, пылеугольных котлов ТЭЦ и ГРЭС, содорегенерационных,

корьевых котлов ЦБК, котлов-утилизаторов мусоросжигающих заводов и других котлов с сильно загрязненным дымовым газом (аглодоменное производство, печи НПЗ и т.д.).

Подробную информацию о ТОиРЭ, описание типа, методику поверки, сертификаты можно посмотреть на официальном сайте компании «Энергопромкомплект»: www.enpc.ru.

000 «НПФ «Энергопромкомплект», г. Москва, тел.: +7 (495) 518-8600, e-mail: energopc@gmail.com, сайт: www.enpc.ru